Seven Spooky Species

Posted on

Leading up to Halloween night, I recently embarked on a #scicomm project via social media (Facebook and Twitter), sharing information about #SevenSpookySpecies from the ocean. The project was fairly successful in engaging people on Facebook (95 likes, 19 interactive comments, and 3 shared posts), and Twitter (26 likes and 23 retweets). I was able to spark interest in followers by introducing people to the the biology of skeleton shrimps, vampire squids from hell, ghostly shrimps, humpbacked anglerfish, creepy crawly spider crabs, giant isopods, and alien amphipods. I very much enjoyed delivering this series of fun (and maybe a little bit creepy) marine species. In fact, I plan to make this an annual series leading up to Halloween. Nonetheless, I wanted to make it accessible for those who may have missed my posts.

So without further ado, here are my picks for this year’s #SevenSpookySpecies!

#7. Skeleton shrimp, Caprella mutica 

Japanese skeleton shrimp (Caprella mutica)
Japanese skeleton shrimp (Caprella mutica)

Commonly known as the Japanese skeleton shrimp, Caprella mutica is native to eastern Asia and is considered an invasive species in Atlantic Canada, first reported in the Bay of Fundy in the 1990s (although it’s ecological impacts as an invader are not well understood). These guys can often be found in high densities on ropes, buoys, mussel socks, and other man-made structures. They are quite small, with males reaching a maximum size ~3.5 cm and females reaching a maximum size ~1.5 cm. The males’ neck and claws are super hairy and the males also have a segmented neck (2 segments).

#6. Ghost shrimp, Neotrypaea californiensis

Ghost shrimps (Neotrypaea californiensis) are an intertidal species found on the Pacific coast of North America. These shrimps are fairly pale in appearance and can reach a maximum size of just under 12 cm body length. Neotrypaea californiensis live underneath the sediment surface in U-shaped burrows that reach to the surface of the sediment – as such, they’re referred to as “infaunal” species (species living within the sediment). These burrows have many branches or arms and support a diverse array of other species, including snapping shrimps, copepods, crabs, and clams.

Bay ghost shrimp (Neotrypaea californiensis)
Bay ghost shrimp (Neotrypaea californiensis)

In Canada, they can be found in soft-sediment intertidal habitats (mud- and sandflats) of British Columbia where they residewith other infaunal shrimps (mud shrimps, Upogebia pugettensis). Together with mud shrimps, ghost shrimps can often be found in high densities, which can result in significant amounts of bioturbation (i.e. sediment disturbance). Because they are such efficient bioturbators, it is thought that ghost shrimps (and mud shrimps) positively affect their surrounding ecosystem increasing primary and secondary productivity, and by reducing the system’s susceptibility to eutrophication (nutrient loading). However, this bioturbation can have negative effects on the production of oyster beds and they’re often considered pests. As such, mudflats with high densities of mud and ghost shrimps are often sprayed with insecticides to remove the “pests”. These shrimps are also often used by fishermen as bait.

The adults of this species display claw dimorphism (or claw asymmetry) – meaning that one claw is bigger than the other. This feature is more pronounced in males, where the large claw can account for as much as 25% of the male’s body mass (see image below) – imagine one of your hands occupying 25% of your weight! The larger claw in males is thought to be used when two individuals are competing for a mate and is thus likely an evolutionary product of sexual selection.

#5. Spider crab, Macrocheira kaempferi

Japanese Spider Crab (Macrocheira kaempferi)
Japanese Spider Crab (Macrocheira kaempferi)

Having the largest leg span of any living arthropod, the Japanese Spider Crab (Macrocheira kaempferi) resides in the waters off of Japan. This species can have a leg span of up to 18 feet (5.5 meters) from claw to claw and is thought to live up to 100 years (although ageing crustaceans has proven difficult). M. kaempferi can weigh up to >40 lbs, making it the second heaviest living arthropod, (second to the American Lobster).

Japanese Spider Crab (Macrocheira kaempferi)
Japanese Spider Crab (Macrocheira kaempferi)

Japanese Spider Crabs use their thick and durable exoskeleton to protect themselves from predators. However,they also utilize camouflage to avoid being detected by their predators, as their carapace blends well with the sea bottom. Even more, these crabs use a super cool behaviour called decorating to disguise themselves, whereby they cover their shells in algae, sponges, and other plants and animals to enhance its cryptic appearance on the ocean floor.

Japanese Spider Crabs are omnivorous. They can use their claws to gather seaweed and algae from the ocean floor, or to pry open the shells of shellfish. Additionally, these crabs are also known to scavenge on the carcasses of dead animals on the sea floor. A small fishery for this species exists in Japan. However, population declines have meant that fishermen need to fish deeper waters to catch this species and have initiated considerable conservation efforts to protect their populations. Nonetheless, these crabs aren’t an easy catch, as they are very fast and can cause considerable damage to humans with their strong claws and long reach!

#4. Vampire squid (from Hell), Vampyroteuthis infernalis

Not an octopus, not a squid, and residing in deep temperate and tropical seas, Vampyroteuthis infernalis (which translates to “vampire squid from Hell”) is a small cephalopod reaching a maximum body length of ~30 cm. This animal is unique in that it contains the features of two other groups of cephalopods: octopuses and squids! The vampire squid has 8 arms (like an octopus) which support a web of tissue. Concealed behind this web of tissue are two “retractile sensory filaments” – sensory structures akin to squid tentacles that retract into pockets of tissue that are used to detect predators and prey (and other environmental attributes). As such, the vampire squid is placed in its own Order taxonomically – the Vampyromorphida. Because the Vampyromorphida have the features of both octopuses and squids, it is thought that this group of animals may represent a common ancestor to modern octopuses and squids. Interestingly, Vampyroteuthis infernalis is the only extant (still living) species of Vampyromorphida (as far as we know; we still have a lot to learn about the deep sea).

Vampire squid (Vampyroteuthis infernalis)
Vampire squid (Vampyroteuthis infernalis)

Behaviourally, when these animals are threatened, they use a defense response known as the “pumpkin” or “pineapple” posture. When a vampire squid is threatened by a predator or superior combatant, it throws its arms back over its body and the web of tissue acts as a “cape”. When the cape covers the body, it displays intimidating (but completely harmless; they’re simply constructed of soft tissue) spines, or “fangs”; hence the vampire reference. In addition, the animal uses bioluminesence when in the “pumpkin” or “pineapple” posture, where the tips of its arms flash light and trick a predator into biting the tips of its arms, rather than biting vital structures. Luckily, if a predator does dismember a vampire squid’s arms, they can regenerate.

A vampire squid from Hell that displays a pumpkin posture – definitely a spooky species!

#3. Humpback anglerfish, Melanocetus johnsonii

Chosen as species #3for its Quasimodo-esque name (of course, any anglerfish would suffice as a spooky species), Melanocetus johnsonii is a species of anglerfish belonging to the family Melanocetidae, which are more commonly known as “the black seadevils”. This species lives in the deep sea and can reach depths of up to 4500 m below the surface. M. jonsonii is considered fairly ubiquitous, having been found in tropical and temperate waters of all five oceans.

As in other anglerfishes, female M. johnsonii (max. size of 18 cm) are much larger than the males (< 3 cm). It is black in colour and has a broad, deep head with

Humpback anglerfish (Melanocetus johnsonii)
Humpback anglerfish (Melanocetus johnsonii)

very small eyes. Like other anglers, the humpback anglerfish possesses an illicium (or esca) – a “fishing lure” – on its head. This lure dangles near the angler’s mouth and uses bioluminescence to attract prey (remember Finding Nemo?). These predators can consume fairly large prey items – indeed a 5 cm female is recorded to with 3 fish >10 cm body length in its stomach!

While it is certainly most difficult to study anglerfish behaviour, their reproductive strategies are fairly well known. In many anglerfishes, when a male finds a female mate, he attaches himself to her permanently and acts as a parasite, releasing sperm and mating with the same female for the duration of their existence (i.e., males are often monogamous). However, while male M. johnsonii do attach to females for mating, they do not attach permanently, release from the female once she has been inseminated, and will seek other mates.

#2. Giant isopod, Bathynomus giganteus

Giant isopod (Bathynomus giganteus)
Giant isopod (Bathynomus giganteus)

If you’ve ever turned over an old log, you may have noticed a number of small, grey “bugs” that are commonly referred to as woodlice or pill bugs. These actually aren’t insects, but belong to a group of arthropods known as the Isopoda! While the thought of those little woodlice may have your skin crawling, they pale in comparison to their deep-sea relatives, the giant isopods!

Giant isopods belong to the genus Bathynomus, of which there are approximately 18 species. Within this genus, Bathynomus giganteus – first described in 1879 – is often considered the largest isopod in the world with a maximum length of 76 cm and a maximum weight of just under 4 lbs. It is likely, however, that other Bathynomus species likely reach comparable sizes. Given their overwhelming size, giant isopods are a great example of deep sea gigantism (the tendency of deep sea species to be far larger than their shallow-water counterparts).

Giant isopod (Bathynomus giganteus)
Giant isopod (Bathynomus giganteus)

The morphology of giant isopods is highly similar to their terrestrial relatives (woodlice) except for the obvious difference – their size! B. giganteus are scavengers on the sea floor and can be found at considerable depths of >2,000 meters (but also at shallower depths of approximately 170 m)! As such, B. giganteus must be able to withstand incredible pressure and extremely low temperatures (which is one potential explanation for deep sea gigantism).

These isopods are primarily carnivorous scavengers, feeding on pelagic animals that perish and sink to the sea floor. They may also act as predators, eating live animals on the sea bottom. Because food is scarce in the deep sea (another potential explanation for deep sea gigantism), however, giant isopods will essentially eat whatever they come across. When they do find food, they often gorge themselves to the point that they can no longer move (kind of like after a big Thanksgiving turkey). They are also thought to be fairly aggressive animals, as they’ve been documented attacking trawl cages and live fish – one was once filmed attacking a shark by latching onto and eating the shark’s face! While that might sound a bit unnerving, you might consider doing the same thing if you had to go upwards of 5 years without eating (as I said, food is scarce in the deep sea)!

#1. Alien amphipod, Phronima sedentaria

Phronima sedentaria is a deep sea amphipod that can be found at depths of up to1,000 m. The females of this species can reach lengths of >4 cm and are larger than males, which only reach up to 1.5 cm. P. sedentaria resides in temperate, subtropical, and tropical waters and can be found in all five of the world’s oceans. While it can reach extreme depths of up to 1,000 m, it is most commonly found in midwater pelagic habitats and can even be found at the surface.

Alien amphipod (Phronima sedentaria)
Alien amphipod (Phronima sedentaria)

So you may be wondering why the hell I chose this species as my most favorite spooky species – this little guy doesn’t seem so scary at all! That is until you realize that the queen Xenomorph in “Alien” is likely based on this tiny deep sea amphipod. While much smaller than the alien queen, the outward appearance is highly similar. For a super detailed comparison between the two, check out this killer post from Michael Bok at Southern Friend Science published back in 2010.

Not only do these amphipods look like Xenomorphs, but P. sedentaria also exploits a host organism to reproduce – just like Xenomorphs! Females will hunt for salps, consume all of their living tissue to hollow them out, and essentially live inside the hollowed-out salp “barrel”. The female amphipods then use their specialized appendages (known as pleopods) to propel the barrel through the water in search of more prey, and can even do somersaults to quickly change direction. So they essentially kill, eat, and hollow out these salps, and use them as a vehicle to cruise around the deep sea in. Then, when they’re ready, the females will lay their eggs inside the barrel, where the eggs will develop and eventually hatch. Once the larval amphipods hatch, they use the salp barrel as food. When they inevitably grow up into adult amphipods, P. sedentaria become carnivorous predators, feeding predominantly on zooplankton, krill, and arrowworms – they can even take down prey more than twice their own size!


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s